Silicon qubits plus light add up to new quantum computing capability

Your daily selection of the latest science news!

According to Phys.org – latest science and technology news stories

Better together: Silicon qubits plus light add up to new quantum computing capability
In a step forward for quantum computing in silicon — the same material used in today’s computers — researchers successfully coupled a single electron’s spin, represented by the dot on the left, to light, represented as a wave passing over the electron, which is trapped in a double-welled silicon chamber known as a quantum dot. The goal is to use light to carry quantum information to other locations on a futuristic quantum computing chip. Credit: Emily Edwards, University of Maryland.

A silicon-based quantum computing device could be closer than ever due to a new experimental device that demonstrates the potential to use light as a messenger to connect quantum bits of information—known as qubits—that are not immediately adjacent to each other. The feat is a step toward making quantum computing devices from silicon, the same material used in today’s smartphones and computers.

The research, published in the journal Nature, was led by researchers at Princeton University in collaboration with colleagues at the University of Konstanz in Germany and the Joint Quantum Institute, which is a partnership of the University of Maryland and the National Institute of Standards and Technology.

 

The team created qubits from single electrons trapped in silicon chambers known as double dots. By applying a magnetic field, they showed they could transfer quantum information, encoded in the electron property known as spin, to a particle of light, or photon, opening the possibility of transmitting the quantum information.

 

“This is a breakout year for silicon spin qubits,” said Jason Petta, professor of physics at Princeton. “This work expands our efforts in a whole new direction, because it takes you out of living in a two-dimensional landscape, where you can only do nearest-neighbor coupling, and into a world of all-to-all connectivity,” he said. “That creates flexibility in how we make our devices.”

 

Quantum devices offer computational possibilities that are not possible with today’s computers, such as factoring large numbers and simulating chemical reactions. Unlike conventional computers, the devices operate according to the quantum mechanical laws that govern very small structures such as single atoms and sub-atomic particles. Major technology firms are already building quantum computers based on superconducting qubits and other approaches.

 

“This result provides a path to scaling up to more complex systems following the recipe of the semiconductor industry,” said Guido Burkard, professor of physics at the University of Konstanz, who provided guidance on theoretical aspects in collaboration with Monica Benito, a postdoctoral researcher. “That is the vision, and this is a very important step.”

 

Jacob Taylor, a member of the team and a fellow at the Joint Quantum Institute, likened the light to a wire that can connect spin qubits. “If you want to make a quantum computing device using these trapped electrons, how do you send information around on the chip? You need the quantum computing equivalent of a wire.”

 

 

Silicon spin qubits are more resilient than competing technologies to outside disturbances such as heat and vibrations, which disrupt inherently fragile quantum states. The simple act of reading out the results of a quantum calculation can destroy the quantum state, a phenomenon known as “quantum demolition.”

 

The researchers theorize that the current approach may avoid this problem because it uses light to probe the state of the quantum system. Light is already used as a messenger to bring cable and internet signals into homes via fiber optic cables, and it is also being used to connect superconducting qubit systems, but this is one of the first applications in silicon spin qubits.

 

In these qubits, information is represented by the electron’s spin, which can point up or down. For example, a spin pointing up could represent a 0 and a spin pointing down could represent a 1. Conventional computers, in contrast, use the electron’s charge to encode information.

 

Connecting silicon-based qubits so that they can talk to each other without destroying their information has been a challenge for the field. Although the Princeton-led team successfully coupled two neighboring electron spins separated by only 100 nanometers (100 billionths of a meter), as published in Science in December 2017, coupling spin to light, which would enable long-distance spin-spin coupling, has remained a challenge until now.

 

In the current study, the team solved the problem of long-distance communication by coupling the qubit’s information—that is, whether the spin points up or down—to a particle of light, or photon, which is trapped above the qubit in the chamber. The photon’s wave-like nature allows it to oscillate above the qubit like an undulating cloud.

 

Graduate student Xiao Mi and colleagues figured out how to link the information about the spin’s direction to the photon, so that the light can pick up a message, such as “spin points up,” from the qubit. “The strong coupling of a single spin to a single photon is an extraordinarily difficult task akin to a perfectly choreographed dance,” Mi said. “The interaction between the participants—spin, charge and photon—needs to be precisely engineered and protected from environmental noise, which has not been possible until now.” The team at Princeton included postdoctoral fellow Stefan Putz and graduate student David Zajac.

 

The advance was made possible by tapping into light’s electromagnetic wave properties. Light consists of oscillating electric and magnetic fields, and the researchers succeeded in coupling the light’s electric field to the electron’s spin state.

 

The researchers did so by building on team’s finding published in December 2016 in the journal Science that demonstrated coupling between a single electron charge and a single particle of light.

 

To coax the qubit to transmit its to the photon, the researchers place the electron spin in a large magnetic field gradient such that the has a different orientation depending on which side of the quantum dot it occupies. The magnetic field gradient, combined with the charge coupling demonstrated by the group in 2016, couples the qubit’s spin direction to the photon’s electric field.

 

Ideally, the photon will then deliver the message to another qubit located within the chamber. Another possibility is that the ‘s message could be carried through wires to a device that reads out the message. The researchers are working on these next steps in the process.

 

Several steps are still needed before making a silicon-based quantum computer, Petta said. Everyday computers process billions of bits, and although qubits are more computationally powerful, most experts agree that 50 or more qubits are needed to achieve quantum supremacy, where quantum computers would start to outshine their classical counterparts.

 

Daniel Loss, a professor of physics at the University of Basel in Switzerland who is familiar with the work but not directly involved, said: “The work by Professor Petta and collaborators is one of the most exciting breakthroughs in the field of spin qubits in recent years. I have been following Jason’s work for many years and I’m deeply impressed by the standards he has set for the field, and once again so with this latest experiment to appear in Nature. It is a big milestone in the quest of building a truly powerful quantum computer as it opens up a pathway for cramming hundreds of millions of qubits on a square-inch chip. These are very exciting developments for the field ¬— and beyond.”website

Read more…

  • Got any news, tips or want to contact us directly? Email esistme@gmail.com

__

This article and images were originally posted on [Phys.org – latest science and technology news stories] February 14, 2018 at 01:30PM. Credit to Author and Phys.org – latest science and technology news stories | ESIST.T>G>S Recommended Articles Of The Day

 

 

 

The Era of Quantum Computing Is Here. Outlook: Cloudy

Your daily selection of the latest science news!

According to Quanta Magazine

Quantum computers have to deal with the problem of noise, which can quickly derail any calculation.

After decades of heavy slog with no promise of success, quantum computing is suddenly buzzing with almost feverish excitement and activity. Nearly two years ago, IBM made a quantum computer available to the world: the 5-quantum-bit (qubit) resource they now call (a little awkwardly) the IBM Q experience. That seemed more like a toy for researchers than a way of getting any serious number crunching done. But 70,000 users worldwide have registered for it, and the qubit count in this resource has now quadrupled. In the past few months, IBM and Intel have announced that they have made quantum computers with 50 and 49 qubits, respectively, and Google is thought to have one waiting in the wings. “There is a lot of energy in the community, and the recent progress is immense,” said physicist Jens Eisert of the Free University of Berlin.

There is now talk of impending “quantum supremacy”: the moment when a quantum computer can carry out a task beyond the means of today’s best classical supercomputers. That might sound absurd when you compare the bare numbers: 50 qubits versus the billions of classical bits in your laptop. But the whole point of quantum computing is that a quantum bit counts for much, much more than a classical bit. Fifty qubits has long been considered the approximate number at which quantum computing becomes capable of calculations that would take an unfeasibly long time classically. Midway through 2017, researchers at Google announced that they hoped to have demonstrated quantum supremacy by the end of the year. (When pressed for an update, a spokesperson recently said that “we hope to announce results as soon as we can, but we’re going through all the detailed work to ensure we have a solid result before we announce.”)

It would be tempting to conclude from all this that the basic problems are solved in principle and the path to a future of ubiquitous quantum computing is now just a matter of engineering. But that would be a mistake. The fundamental physics of quantum computing is far from solved and can’t be readily disentangled from its implementation.

Even if we soon pass the quantum supremacy milestone, the next year or two might be the real crunch time for whether quantum computers will revolutionize computing. There’s still everything to play for and no guarantee of reaching the big goal.

IBM’s quantum computing center at the Thomas J. Watson Research Center in Yorktown Heights, New York, holds quantum computers in large cryogenic tanks (far right) that are cooled to a fraction of a degree above absolute zero.

Shut Up and Compute

Both the benefits and the challenges of quantum computing are inherent in the physics that permits it. The basic story has been told many times, though not always with the nuance that quantum mechanics demands. Classical computers encode and manipulate information as strings of binary digits — 1 or 0. Quantum bits do the same, except that they may be placed in a so-called superposition of the states 1 and 0, which means that a measurement of the qubit’s state could elicit the answer 1 or 0 with some well-defined probability.

To perform a computation with many such qubits, they must all be sustained in interdependent superpositions of states — a “quantum-coherent” state, in which the qubits are said to be entangled. That way, a tweak to one qubit may influence all the others. This means that somehow computational operations on qubits count for more than they do for classical bits. The computational resources increase in simple proportion to the number of bits for a classical device, but adding an extra qubit potentially doubles the resources of a quantum computer. This is why the difference between a 5-qubit and a 50-qubit machine is so significant.

Note that I’ve not said — as it often is said — that a quantum computer has an advantage because the availability of superpositions hugely increases the number of states it can encode, relative to classical bits. Nor have I said that entanglement permits many calculations to be carried out in parallel. (Indeed, a strong degree of qubit entanglement isn’t essential.) There’s an element of truth in those descriptions — some of the time — but none captures the essence of quantum computing.

Inside one of IBM’s cryostats wired for a 50-qubit quantum system.

It’s hard to say qualitatively why quantum computing is so powerful precisely because it is hard to specify what quantum mechanics means at all. The equations of quantum theory certainly show that it will work: that, at least for some classes of computation such as factorization or database searches, there is tremendous speedup of the calculation. But how exactly?

Perhaps the safest way to describe quantum computing is to say that quantum mechanics somehow creates a “resource” for computation that is unavailable to classical devices. As quantum theorist Daniel Gottesman of the Perimeter Institute in Waterloo, Canada, put it, “If you have enough quantum mechanics available, in some sense, then you have speedup, and if not, you don’t.”

Some things are clear, though. To carry out a quantum computation, you need to keep all your qubits coherent. And this is very hard. Interactions of a system of quantum-coherent entities with their surrounding environment create channels through which the coherence rapidly “leaks out” in a process called decoherence. Researchers seeking to build quantum computers must stave off decoherence, which they can currently do only for a fraction of a second. That challenge gets ever greater as the number of qubits — and hence the potential to interact with the environment — increases. This is largely why, even though quantum computing was first proposed by Richard Feynman in 1982 and the theory was worked out in the early 1990s, it has taken until now to make devices that can actually perform a meaningful computation.

Quantum Errors

There’s a second fundamental reason why quantum computing is so difficult. Like just about every other process in nature, it is noisy. Random fluctuations, from heat in the qubits, say, or from fundamentally quantum-mechanical processes, will occasionally flip or randomize the state of a qubit, potentially derailing a calculation. This is a hazard in classical computing too, but it’s not hard to deal with — you just keep two or more backup copies of each bit so that a randomly flipped bit stands out as the odd one out.

Researchers working on quantum computers have created strategies for how to deal with the noise. But these strategies impose a huge debt of computational overhead — all your computing power goes to correcting errors and not to running your algorithms. “Current error rates significantly limit the lengths of computations that can be performed,” said Andrew Childs, the codirector of the Joint Center for Quantum Information and Computer Science at the University of Maryland. “We’ll have to do a lot better if we want to do something interesting.”

Andrew Childs, a quantum theorist at the University of Maryland, cautions that error rates are a fundamental concern for quantum computers.

A lot of research on the fundamentals of quantum computing has been devoted to error correction. Part of the difficulty stems from another of the key properties of quantum systems: Superpositions can only be sustained as long as you don’t measure the qubit’s value. If you make a measurement, the superposition collapses to a definite value: 1 or 0. So how can you find out if a qubit has an error if you don’t know what state it is in?

One ingenious scheme involves looking indirectly, by coupling the qubit to another “ancilla” qubit that doesn’t take part in the calculation but that can be probed without collapsing the state of the main qubit itself. It’s complicated to implement, though. Such solutions mean that, to construct a genuine “logical qubit” on which computation with error correction can be performed, you need many physical qubits.

How many? Quantum theorist Alán Aspuru-Guzik of Harvard University estimates that around 10,000 of today’s physical qubits would be needed to make a single logical qubit — a totally impractical number. If the qubits get much better, he said, this number could come down to a few thousand or even hundreds. Eisert is less pessimistic, saying that on the order of 800 physical qubits might already be enough, but even so he agrees that “the overhead is heavy,” and for the moment we need to find ways of coping with error-prone qubits.

An alternative to correcting errors is avoiding them or canceling out their influence: so-called error mitigation. Researchers at IBM, for example, are developing schemes for figuring out mathematically how much error is likely to have been incurred in a computation and then extrapolating the output of a computation to the “zero noise” limit.

Some researchers think that the problem of error correction will prove intractable and will prevent quantum computers from achieving the grand goals predicted for them. “The task of creating quantum error-correcting codes is harder than the task of demonstrating quantum supremacy,” said mathematician Gil Kalai of the Hebrew University of Jerusalem in Israel. And he adds that “devices without error correction are computationally very primitive, and primitive-based supremacy is not possible.” In other words, you’ll never do better than classical computers while you’ve still got errors.

Others believe the problem will be cracked eventually. According to Jay Gambetta, a quantum information scientist at IBM’s Thomas J. Watson Research Center, “Our recent experiments at IBM have demonstrated the basic elements of quantum error correction on small devices, paving the way towards larger-scale devices where qubits can reliably store quantum information for a long period of time in the presence of noise.” Even so, he admits that “a universal fault-tolerant quantum computer, which has to use logical qubits, is still a long way off.” Such developments make Childs cautiously optimistic. “I’m sure we’ll see improved experimental demonstrations of , but I think it will be quite a while before we see it used for a real computation,” he said.

Living With Errors

For the time being, quantum computers are going to be error-prone, and the question is how to live with that. At IBM, researchers are talking about “approximate quantum computing” as the way the field will look in the near term: finding ways of accommodating the noise.

This calls for algorithms that tolerate errors, getting the correct result despite them. It’s a bit like working out the outcome of an election regardless of a few wrongly counted ballot papers. “A sufficiently large and high-fidelity quantum computation should have some advantage even if it is not fully fault-tolerant,” said Gambetta.

One of the most immediate error-tolerant applications seems likely to be of more value to scientists than to the world at large: to simulate stuff at the atomic level. (This, in fact, was the motivation that led Feynman to propose quantum computing in the first place.) The equations of quantum mechanics prescribe a way to calculate the properties — such as stability and chemical reactivity — of a molecule such as a drug. But they can’t be solved classically without making lots of simplifications.

In contrast, the quantum behavior of electrons and atoms, said Childs, “is relatively close to the native behavior of a quantum computer.” So one could then construct an exact computer model of such a molecule. “Many in the community, including me, believe that quantum chemistry and materials science will be one of the first useful applications of such devices,” said Aspuru-Guzik, who has been at the forefront of efforts to push quantum computing in this direction.

Quantum simulations are proving their worth even on the very small quantum computers available so far. A team of researchers including Aspuru-Guzik has developed an algorithm that they call the variational quantum eigensolver (VQE), which can efficiently find the lowest-energy states of molecules even with noisy qubits. So far it can only handle very small molecules with few electrons, which classical computers can already simulate accurately. But the capabilities are getting better, as Gambetta and coworkers showed last September when they used a 6-qubit device at IBM to calculate the electronic structures of molecules, including lithium hydride and beryllium hydride. The work was “a significant leap forward for the quantum regime,” according to physical chemist Markus Reiher of the Swiss Federal Institute of Technology in Zurich, Switzerland. “The use of the VQE for the simulation of small molecules is a great example of the possibility of near-term heuristic algorithms,” said Gambetta.

But even for this application, Aspuru-Guzik confesses that logical qubits with error correction will probably be needed before quantum computers truly begin to surpass classical devices. “I would be really excited when error-corrected quantum computing begins to become a reality,” he said.

“If we had more than 200 logical qubits, we could do things in quantum chemistry beyond standard approaches,” Reiher adds. “And if we had about 5,000 such qubits, then the quantum computer would be transformative in this field.”

What’s Your Volume?

Despite the challenges of reaching those goals, the fast growth of quantum computers from 5 to 50 qubits in barely more than a year has raised hopes. But we shouldn’t get too fixated on these numbers, because they tell only part of the story. What matters is not just — or even mainly — how many qubits you have, but how good they are, and how efficient your algorithms are.

Any quantum computation has to be completed before decoherence kicks in and scrambles the qubits. Typically, the groups of qubits assembled so far have decoherence times of a few microseconds. The number of logic operations you can carry out during that fleeting moment depends on how quickly the quantum gates can be switched — if this time is too slow, it really doesn’t matter how many qubits you have at your disposal. The number of gate operations needed for a calculation is called its depth: Low-depth (shallow) algorithms are more feasible than high-depth ones, but the question is whether they can be used to perform useful calculations.

What’s more, not all qubits are equally noisy. In theory it should be possible to make very low-noise qubits from so-called topological electronic states of certain materials, in which the “shape” of the electron states used for encoding binary information confers a kind of protection against random noise. Researchers at Microsoft, most prominently, are seeking such topological states in exotic quantum materials, but there’s no guarantee that they’ll be found or will be controllable.

Researchers at IBM have suggested that the power of a quantum computation on a given device be expressed as a number called the “quantum volume,” which bundles up all the relevant factors: number and connectivity of qubits, depth of algorithm, and other measures of the gate quality, such as noisiness. It’s really this quantum volume that characterizes the power of a quantum computation, and Gambetta said that the best way forward right now is to develop quantum-computational hardware that increases the available quantum volume.

This is one reason why the much vaunted notion of quantum supremacy is more slippery than it seems. The image of a 50-qubit (or so) quantum computer outperforming a state-of-the-art supercomputer sounds alluring, but it leaves a lot of questions hanging. Outperforming for which problem? How do you know the quantum computer has got the right answer if you can’t check it with a tried-and-tested classical device? And how can you be sure that the classical machine wouldn’t do better if you could find the right algorithm?

So quantum supremacy is a concept to handle with care. Some researchers prefer now to talk about “quantum advantage,” which refers to the speedup that quantum devices offer without making definitive claims about what is best. An aversion to the word “supremacy” has also arisen because of the racial and political implications.

Whatever you choose to call it, a demonstration that quantum computers can do things beyond current classical means would be psychologically significant for the field. “Demonstrating an unambiguous quantum advantage will be an important milestone,” said Eisert — it would prove that quantum computers really can extend what is technologically possible.

That might still be more of a symbolic gesture than a transformation in useful computing resources. But such things may matter, because if quantum computing is going to succeed, it won’t be simply by the likes of IBM and Google suddenly offering their classy new machines for sale. Rather, it’ll happen through an interactive and perhaps messy collaboration between developers and users, and the skill set will evolve in the latter only if they have sufficient faith that the effort is worth it. This is why both IBM and Google are keen to make their devices available as soon as they’re ready. As well as a 16-qubit IBM Q experience offered to anyone who registers online, IBM now has a 20-qubit version for corporate clients, including JP Morgan Chase, Daimler, Honda, Samsung and the University of Oxford. Not only will that help clients discover what’s in it for them; it should create a quantum-literate community of programmers who will devise resources and solve problems beyond what any individual company could muster.

“For quantum computing to take traction and blossom, we must enable the world to use and to learn it,” said Gambetta. “This period is for the world of scientists and industry to focus on getting quantum-ready.”

Read more…

  • Got any news, tips or want to contact us directly? Email esistme@gmail.com

__

This article and images were originally posted on [Quanta Magazine] January 24, 2018 at 04:08PM. Credit to Author and Quanta Magazine | ESIST.T>G>S Recommended Articles Of The Day

 

 

 

Microsoft makes play for next wave of computing with quantum computing toolkit

That quantum computing future is, fortunately, still likely to be many years off. For now, Microsoft is taking sign ups for its quantum preview today.

Your daily selection of the best tech news!

According to Ars Technica

Microsoft

 

At its Ignite conference today, Microsoft announced its moves to embrace the next big thing in computing: quantum computing. Later this year, Microsoft will release a new quantum computing programming language, with full Visual Studio integration, along with a quantum computing simulator. With these, developers will be able to both develop and debug quantum programs implementing quantum algorithms.

Quantum computing uses quantum features such as superposition and entanglement to perform calculations. Where traditional digital computers are made from bits, each bit representing either a one or a zero, quantum computers are made from some number of qubits (quantum bits). Qubits represent, in some sense, both one and zero simultaneously (a quantum superposition of 1 and 0). This ability for qubits to represent multiple values gives quantum computers exponentially more computing power than traditional computers.

Traditional computers are built up of logic gates—groups of transistors that combine bits in various ways to perform operations on them—but this construction is largely invisible to people writing programs for them. Programs and algorithms aren’t written in terms of logic gates; they use higher level constructs, from arithmetic to functions to objects, and more. The same is not really true of quantum algorithms; the quantum algorithms that have been developed so far are in some ways more familiar to an electronic engineer than a software developer, with algorithms often represented as quantum circuits—arrangements of quantum logic gates, through which qubits flow—rather than more typical programming language concepts.

 

Read more…

__

This article and images were originally posted on [Ars Technica] September 25, 2017 at 09:02AM

Credit to Author and Ars Technica

 

 

 

 

Breaking: An Entirely New Type of Quantum Computing Has Been Invented

Your daily selection of the latest science news!

According to ScienceAlert

Australian researchers have designed a new type of qubit – the building block of quantum computers – that they say will finally make it possible to manufacture a true, large-scale quantum computer.

Broadly speaking, there are currently a number of ways to make a quantum computer. Some take up less space, but tend to be incredibly complex. Others are simpler, but if you want it to scale up you’re going to need to knock down a few walls.

Some tried and true ways to capture a qubit are to use standard atom-taming technology such as ion traps and optical tweezers that can hold onto particles long enough for their quantum states to be analysed.

Others use circuits made of superconducting materials to detect quantum superpositions within the insanely slippery electrical currents.

The advantage of these kinds of systems is their basis in existing techniques and equipment, making them relatively affordable and easy to put together.

The cost is space – the technology might do for a relatively small number of qubits, but when you’re looking at hundreds or thousands of them linked into a computer, the scale quickly becomes unfeasible.

Thanks to coding information in both the nucleus and electron of an atom, the new silicon qubit, which is being called a ‘flip-flop qubit’, can be controlled by electric signals, instead of magnetic ones. That means it can maintain quantum entanglement across a larger distance than ever before, making it cheaper and easier to build into a scalable computer.

Read more…

__

This article and images were originally posted on [ScienceAlert] September 6, 2017 at 05:20AM

Credit to Author and ScienceAlert

 

 

 

 

Quantum Computing Is Coming at Us Fast, So Here’s Everything You Need to Know

In the quantum world, objects can exist in a what is called a superposition of states: A hypothetical atomic-level light bulb could simultaneously be both on and off. This strange feature has important ramifications for computing.

Your daily selection of the latest science news!

According to ScienceAlert

In early July, Google announced that it will expand its commercially available cloud computing services to include quantum computing. A similar service has been available from IBM since May. These aren’t services most regular people will have a lot of reason to use yet.

But making quantum computers more accessible will help government, academic and corporate research groups around the world continue their study of the capabilities of quantum computing.

Understanding how these systems work requires exploring a different area of physics than most people are familiar with.

From everyday experience we are familiar with what physicists call “classical mechanics,” which governs most of the world we can see with our own eyes, such as what happens when a car hits a building, what path a ball takes when it’s thrown and why it’s hard to drag a cooler across a sandy beach.

Quantum mechanics, however, describes the subatomic realm – the behaviour of protons, electrons and photons. The laws of quantum mechanics are very different from those of classical mechanics and can lead to some unexpected and counterintuitive results, such as the idea that an object can have negative mass.

Physicists around the world – in government, academic and corporate research groups – continue to explore real-world deployments of technologies based on quantum mechanics. And computer scientists, including me, are looking to understand how these technologies can be used to advance computing and cryptography.

Read more…

__

This article and images were originally posted on [ScienceAlert] August 26, 2017 at 12:20AM

Credit to Author and ScienceAlert

 

 

 

Quantum computing advances with control of entanglement

quantum
Credit: CC0 Public Domain
 

When the quantum computer was imagined 30 years ago, it was revered for its potential to quickly and accurately complete practical tasks often considered impossible for mere humans and for conventional computers. But, there was one big catch: Tiny-scale quantum effects fall apart too easily to be practical for reliably powering computers.

Now, a team of scientists in Japan may have overcome this obstacle. Using laser light, they have developed a precise, continuous control technology giving 60 times more success than previous efforts in sustaining the lifetime of “qubits,” the unit that quantum computers encode. In particular, the researchers have shown that they can continue to create a known as the entangled state—entangling more than one million different physical systems, a world record that was only limited in their investigation by data storage space.

This feat is important because entangled quantum particles, such as atoms, electrons and photons, are a resource of created by the behaviors that emerge at the tiny quantum scale. Harnessing them ushers in a new era of information technology. From such behaviors as superposition and entanglement, quantum particles can perform enormous calculations simultaneously. The report of their investigation appears this week in the journal APL Photonics.

“There is a problem of the lifetime of qubits for quantum information processing. We have solved the problem, and we can continue to do quantum information processing for any time period we want,” explained Akira Furusawa, of the Department of Applied Physics, School of Engineering at the University of Tokyo and lead researcher on the study. “The most difficult aspect of this achievement was continuous phase locking between squeezed light beams, but we have solved the problem.”

Quantum computers are considered a next generation of computing after the integrated circuit, silicon-chip based computers that now dominate information processing technology. Current computers use long strings of zeros and ones—called bits—to process information. By contrast, quantum computers process information by harnessing the remarkable power of quantum mechanics that encodes 0s and 1s in quantum states called qubits. Qubits configure in two unusual ways: “superposition” and “entanglement.”

Brace yourself—quantum behaviors are unusual. Einstein himself characterized entanglement as “spooky action at a distance.”

Start with the fact that quantum systems can be in several states simultaneously—the up and down of superposition, for example. Particles also exhibit the quantum behavior of entanglement. It is a deeply intimate property between that unites them perfectly in a shared existence, even at immense distance. In other words, spooky.

And it is this spooky action—entanglement—that the University of Tokyo team discovered how to manage so it can be applied to run quantum computers.

For the next steps on this promising path toward making quantum computing practical, Furusawa envisions creating 2-D and 3-D lattices of the entangled state. “This will enable us to make topological quantum computing, which is very robust ,” he said.

Original article on phys.org

Provided by: American Institute of Physics

Quantum computing a step closer to reality

Quantum computing a step closer to reality
Dr Geoff Campbell and Mr Jesse Everett. Credit: Stuart Hay, ANU

Physicists at the Australian National University (ANU) have brought quantum computing a step closer to reality by stopping light in a new experiment.

Lead researcher Jesse Everett said controlling the movement of light was critical to developing future quantum computers, which could solve problems too complex for today’s most advanced computers.

“Optical is still a long way off, but our successful experiment to stop light gets us further along the road,” said Mr Everett from the Research School of Physics and Engineering (RSPE) and ARC Centre of Excellence for Quantum Computation and Communication Technology at ANU.

He said quantum computers based on light – – could connect easily with such as optic fibres and had potential applications in fields such as medicine, defence, telecommunications and financial services.

The research team’s experiment—which created a light trap by shining infrared lasers into ultra-cold atomic vapour—was inspired by Mr Everett’s discovery of the potential to stop light in a computer simulation.

“It’s clear that the light is trapped, there are photons circulating around the atoms,” Mr Everett said.

“The atoms absorbed some of the trapped light, but a substantial proportion of the photons were frozen inside the atomic cloud.”

Video Via ANU TV

Credit: Australian National University

Mr Everett likened the team’s experiment at ANU to a scene from Star Wars: The Force Awakens when the character Kylo Ren used the Force to stop a laser blast mid-air.

“It’s pretty amazing to look at a sci-fi movie and say we actually did something that’s a bit like that,” he said.

Associate Professor Ben Buchler, who leads the ANU research team, said the light-trap experiment demonstrated incredible control of a very complex system.

“Our method allows us to manipulate the interaction of light and atoms with great precision,” said Associate Professor Buchler from RSPE and ARC Centre of Excellence for Quantum Computation and Communication Technology at ANU.

Co-researcher Dr Geoff Campbell from ANU said photons mostly passed by each other at the speed of light without any interactions, while atoms interacted with each other readily.

“Corralling a crowd of photons in a cloud of ultra-cold atoms creates more opportunities for them to interact,” said Dr Campbell from RSPE and ARC Centre of Excellence for Quantum Computation and Communication Technology at ANU.

“We’re working towards a single photon changing the phase of a second photon. We could use that process to make a quantum logic gate, the building block of a quantum computer,” Dr Campbell said.

 

Original article on phys.org

Provided by: Australian National University

Physicists propose first method to control a single quanta of energy

 

(Phys.org)—Physicists have proposed what they believe to be the first method to control the transport of energy at the level of single energy quanta (which are mostly phonons). They show that it’s theoretically possible to control the flow of single energy quanta through a quantum magnet using lasers with carefully controlled frequencies and intensities.

If implemented, the method could allow researchers to explore energy transport phenomena that are expected to be completely different than what is observed in macroscopic energy transport. In general, understanding energy transport in small-scale devices could lead to the development of methods for reducing the energy dissipation in shrinking computer hardware (however, the researchers note that computer hardware differs from the particular setup proposed here).

The scientists, Alejandro Bermudez, at the Institute of Fundamental Physics in Madrid, Spain, and Tobias Schaetz, at the Albert Ludwigs University of Freiburg and the Freiburg Institute for Advanced Studies, both in Freiburg, Germany, have published a paper on their proposed method in a recent issue of the New Journal of Physics.

“We have identified a new quantum mechanism that would allow to control the transport of energy/heat at the level of single energy quanta,” Bermudez told Phys.org. “This mechanism can be considered as an analogue of Coulomb blockade in electronic nanodevices, and we have proposed to test it using experiments with crystals of self-assembled trapped atomic ions.”

In the study, the scientists propose building an energy reservoir using trapped magnesium ions. By using a laser to heat and cool the ions, the ions can be made to absorb or release tiny amounts of energy, acting as tiny energy reservoirs.

Continue Reading

by Lisa Zyga

 

Source: Physicists propose first method to control a single quanta of energy

Research pair create two-atom molecules that are more than a thousand times bigger than typical diatomic molecules

(Phys.org)—A pair of physicists with the Swiss Federal Institute of Technology in Switzerland has found a way to create very large diatomic molecules, and in so doing, have proved some of the theories about such molecules to be correct. In their paper published in Physical Review Letters, Johannes Deiglmayr and Heiner Saßmannshausen describe their experiments and results and why they believe such molecules may have a future in quantum computing.

 

Physicists have been interested in the properties of macromolecules for many years because they believe studying them will illuminate the fundamental properties of in general. Prior research has shown that large, two-atom molecules should be possible if they were put into a Rydberg state—in which the outer electron exists in a high quantum state, allowing it to orbit farther than normal from the nucleus—and thus allowing for the creation of molecules thousands of times larger than conventional diatomic molecules such as H2.

Continue Reading

by Bob Yirka

 

Source: Research pair create two-atom molecules that are more than a thousand times bigger than typical diatomic molecules

Quantum computing researchers reduce quantum information processing errors |ESIST

1.jpg

Making practical quantum optimization one step closer to reality

Quantum computing remains mysterious and elusive to many, but USC Viterbi School of Engineering researchers might have taken us one step closer to bring such super-powered devices to practical reality. The USC Viterbi School of Engineering and Information Sciences Institute is home to the USC-Lockheed Martin Quantum Computing Center (QCC), a super-cooled, magnetically shielded facility specially built to house the first commercially available quantum optimization processors — devices so advanced that there are currently only two in use outside the Canadian company D-Wave Systems Inc., where they were built: The first one went to USC and Lockheed Martin, and the second to NASA and Google.

Quantum computers encode data in quantum bits, or “qubits,” which have the capability of representing the two digits of one and zero at the same time — as opposed to traditional bits, which can encode distinctly either a one or a zero. This property, called superposition, along with the ability of quantum states to “interfere” (cancel or reinforce each other like waves in a pond) and “tunnel” through energy barriers, is what may one day allow quantum processors to ultimately perform optimization calculations much faster than is possible using traditional processors. Optimization problems can take many forms, and quantum processors have been theorized to be useful for a variety of machine learning and big data problems like stock portfolio optimization, image recognition and classification, and detecting anomalies.

Yet, exactly because of the exotic way in which quantum computers process information, they are highly sensitive to errors of different kinds. When such errors occur they can erase any quantum computational advantage. Therefore developing methods to overcome errors is of paramount importance in the quest to demonstrate “quantum supremacy.” In a new article, USC researchers Walter Vinci, Tameem Albash, and Daniel Lidar, put forth a scheme to minimize errors. Their solution, explained in the article “Nested Quantum Annealing Correction” published in the journal Nature Quantum Information, is focused on reducing and correcting errors associated with heating, a type of errors that is common and particularly detrimental in quantum optimizers. Simply cooling the quantum processor further is not possible since the specialized dilution refrigerator that keeps it cool already operates at its limit, at a temperature approximately 1000 times colder than outer space. Vinci, Albash and Lidar have developed a new method to suppress heating errors, which they call “nested quantum annealing correction.”

Continue Reading 

Via University of Southern California

 

Source: Quantum computing researchers reduce quantum information processing errors: Make practical quantum optimization one step closer to reality — ScienceDaily